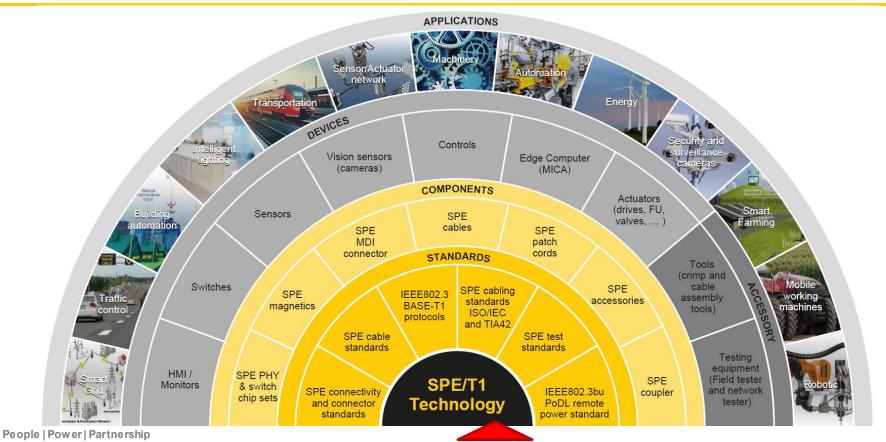


HARTING T1 Industrial

One pair is enough – The new Single Pair Ethernet



Single Pair Ethernet

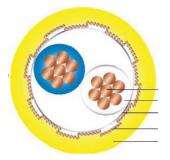
Single Pair Ethernet – Ecosystem

SPE Technology - How to transmit TCP/IP Ethernet data?

All kind of physical media are today used for Ethernet transmission:

— Radio waves like WiFi

Light like LiFi


Fiber optic cables

Copper cables with 2 or 4 twisted pairs (MPE)

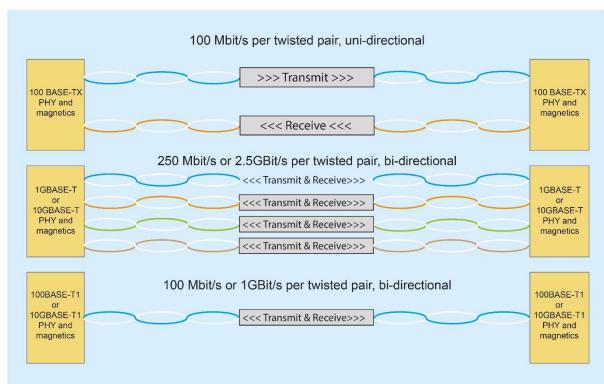
- —Copper cable with just 1 twisted pair
 - → New physical media
 - = Single Pair Ethernet (SPE)

People | Power | Partnership

SPE Technology – Starting point?

Starting point of SPE was the BroadR-Reach® technology from Broadcom:

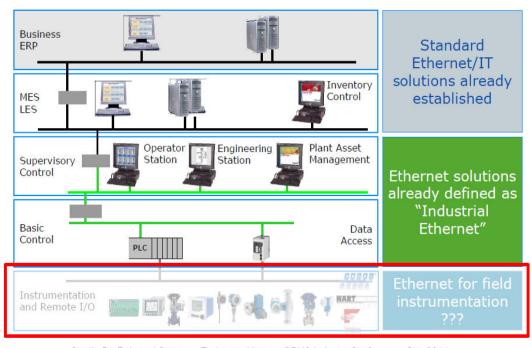
- Automotive Ethernet standard realizes simultaneous transmit and receive (i.e., fullduplex) operations on a single-pair cable.
- Officially released in December 2011, following the formation of The OPEN (One-Pair Ether-Net) Alliance Special Interest Group (SIG). http://www.opensig.org/
- Support by a strong group of Industry's Leading Automotive & Tech Companies


- Standardized as IEEE 802.3bw 2015
- SPE will replace the today used CAN, FlexRay, LIN etc.

SPE Technology – The working principle?

How SPE is working in comparison to 2-pair or 4-pair Ethernet:

- Fast Ethernet use 2 pairs, one pair to transmit and one pair to receive data
- Gigabit Ethernet use 4 pair for bidirectional parallel receive and transmit data
- Single pair Ethernet use just one pair for bidirectional parallel receive and transmit data


People | Power | Partnership

SPE Technology – Why?

SPE can fill the gap in Industrial Networks:

- Desire to converge on one network type
- Ethernet adoption <u>is</u> happening where technically possible
- Non-Ethernet fieldbuses still required to complete communications to the edge
 - Cable lengths > 1km
 - 1200 baud to hundreds of kb/sec
 - Challenges: Combined reach & rate, special environments, cost of operation

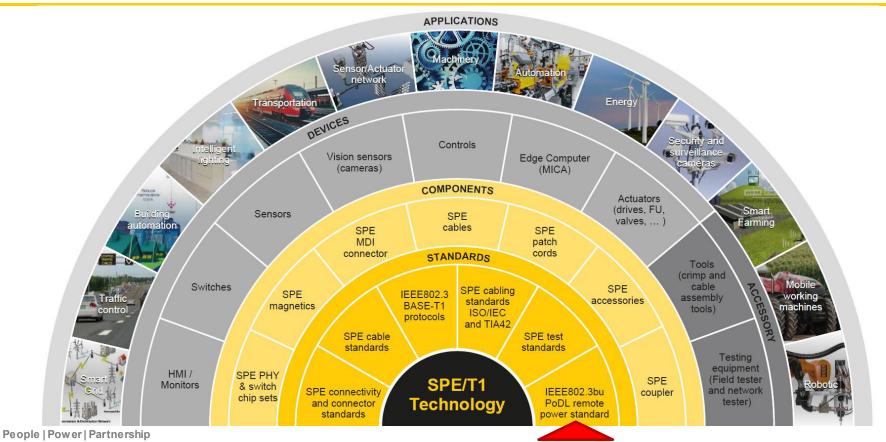
Credit: Dr. Raimund Sommer, Endress + Hauser, ODVA Industry Conference, Oct. 2014.

Ethernet Gap at the 'Edge'

Source: IEEE 802.3 10SPE CFI July 2016

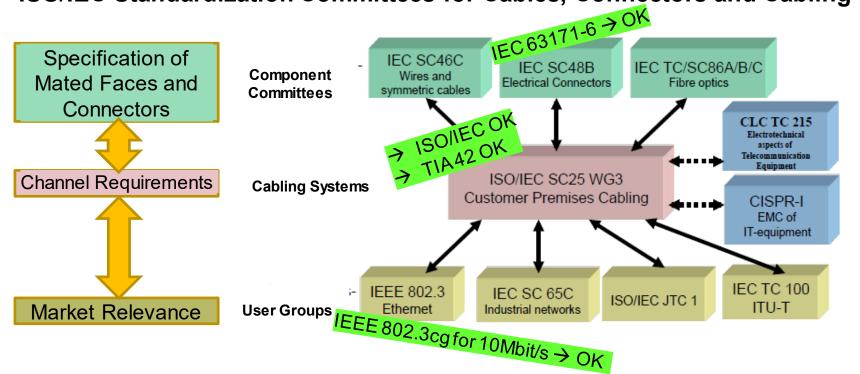
SPE Technology – Our mission as HARTING

- SPE will be only successful in the non automotive market if a standardized connector is defined and widely used. Similar like the RJ45 or also the M12 D- and X-coded connectors.
- HARTING tasks successfully done:
 - → Develop and standardize the SPE interface = IEC 63171-6
 - → Integrate our SPE connector as MDI (Media Depended Interface) to the IEEE 802.3 protocol standards
 - → Integrate our SPE connector to the relevant cabling standards at ISO/IEC and TIA 42



Single Pair Ethernet

Single Pair Ethernet – Ecosystem



International Standardization Process for SPE Cables and Connectors

ISO/IEC Standardization Committees for Cables, Connectors and Cabling

People | Power | Partnership

Quelle: Prof.Dr.Oehler, Convenor ISO/IEC JTC 1/SC 25/WG 3

Connector standards for SPE

D.	5.2	Isometric view and common feature	

5.2.1 Connector Styles

IEC CDV 61076-3-125 @ IEC: 2019

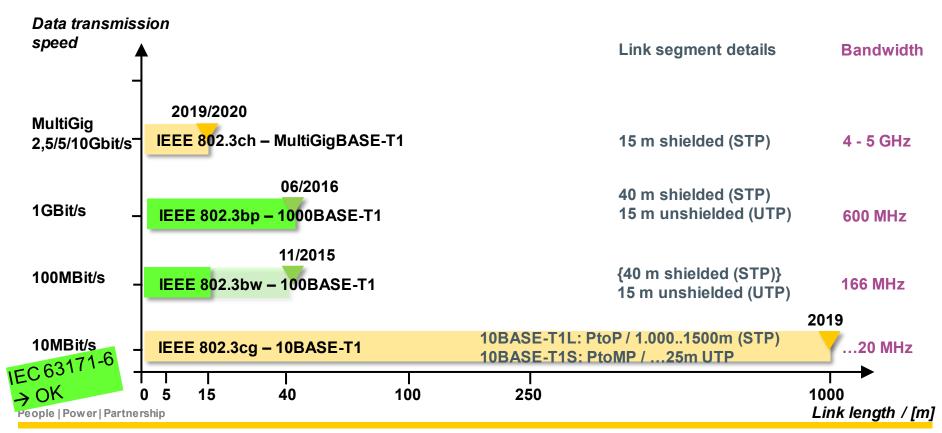
Table 1 - Connector styles

Style	Description	Picture	
2P-L-L	PLUG ¹ - Free 2-way IP20 connector with male contacts, latch locking		
2J-L-L	JACK ¹ - Fixed 2-way IP20 connector with female contacts, latch locking, intended for PCB mounting		
6P-S8	PLUG ¹ - Free 2-way IP65/67 connector with male contacts, size 8 ² , snap-in locking		
6J-S8	JACK ¹ - Fixed 2-way IP65/67 connector with male contacts, size 8 ² , snap-in locking, intended for single bale mounting.		
6P-P8	PLUG ¹ - Free 2-way IP85/87 connector with male contacts, size 8 ² , push pull locking	6	
6J-P8	JACK ¹ - Fixed 2-way IP85/87 connector with female contacts, size 8, push pull locking, intended for single hole mounting		
6P-M8	PLUG ¹ - Free 2-way IP65/67 connector with male contacts, size 8 ² , M8-screw locking		
6J-M8	JACK ¹ - Fixed 2-way IP65/67 connector with female contacts, size 8 ² , M8 thread locking, intended for single bale mounting.		
6P-M8C	PLUG1 - Free 4-way connector with male contacts, size 82, M8 thread locking		
6J-M8C	JACK ¹ - Fixed 4-way connector with female contacts, size 8, M8 thread locking, intended for single hole mounting		
6P-P12	PLUG ¹ - Free 2-way IP65/67 connector with male contacts, size 12 ² , push pull locking		
6P-M12	PLUG¹ – Free 2-way IP85/87 connector with male contacts, size 12², M12 thread locking, intended for single hole mounting		
6J-P12	JACK ¹ - Fixed 2-way IP85/67 connector with female contacts, size 12 ² , push pull locking, intended for single hole mounting		
6J-M12	Identical to 6J-P12 but with M12 thread locking instead of push pull		
6J-C12	Combination of 6J-P12 and 6J-M12: With both, M12 thread and push pull looking.		
The terms F	PLUG and JACK are used only for easier reading since they are wide	ily used.	
	PLUG and JACK are used only for easier reading since they are wide ation "size 8" and "size 12" indicates roughly the diameter of the is		

- 5.2.2 Common features

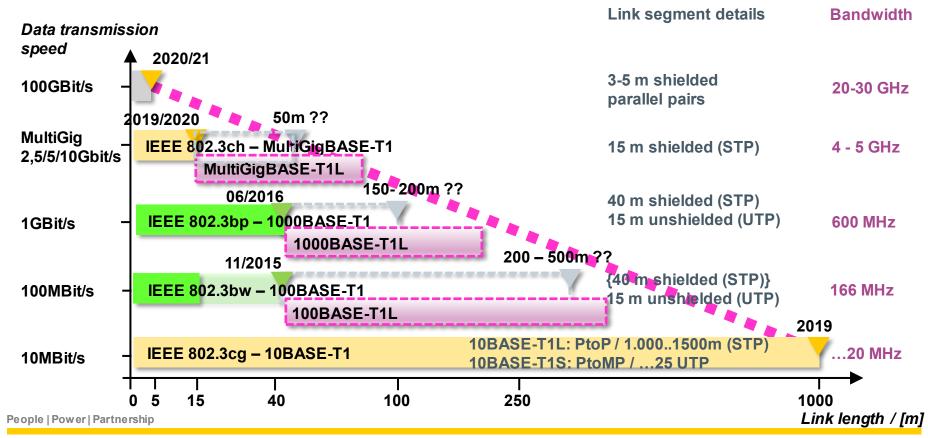
IEC 63171-6 (former IEC 61076-3-125) Connectors for electronic equipment

- Product requirements
- Detail specification for 2-way, shielded, free and fixed connectors for data transmission up to 600MHz with current carrying capacity


Status: CDV / Completion expected end of 2019

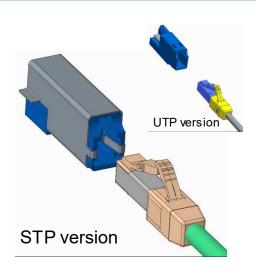
P. 13 ff. refers to the 2 pin SPE plug and jack connector designed by HARTING and the 4 pin (2 data pins and 2 power pins [60V / 8A]) designed by TE Connectivity

IEEE 802.3 Standards for SPE - Status 2018-12



IEEE 802.3 Standards for SPE – Future Eco System

SPE Technology - Results of the international connector selection


SPE connector mating face selection process results from TIA TR42 and ISO/IEC SC25 WG3:

LC style for $M_1I_1C_1E_1$ acc. IEC 63171-1 from CommScope

Industrial style for $M_2I_2C_2E_2$ and $M_3I_3C_3E_3$ acc. IEC 63171-6 from HARTING

IP20

M8 IP65/67

M12 IP65/67

People | Power | Partnership

Ongoing Standardization Process for SPE Cabling

SPE connector mating face selection process results go to:

ISO/IEC SC25 WG3

- ISO/IEC TR 11801-9906: TECHNICAL REPORT:
 Balanced 1-pair cabling channels up to 600 MHz
- ISO/IEC 11801-3 (industrial premises)

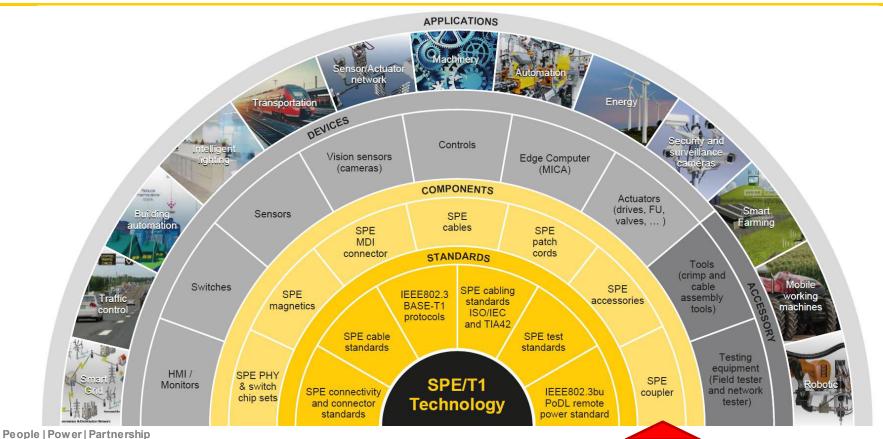
TIA TR42

TIA-1005-A-3:

TELECOMMUNICATIONS INFRASTRUCTURE STANDARD FOR INDUSTRIAL PREMISES ADDENDUM 3 –

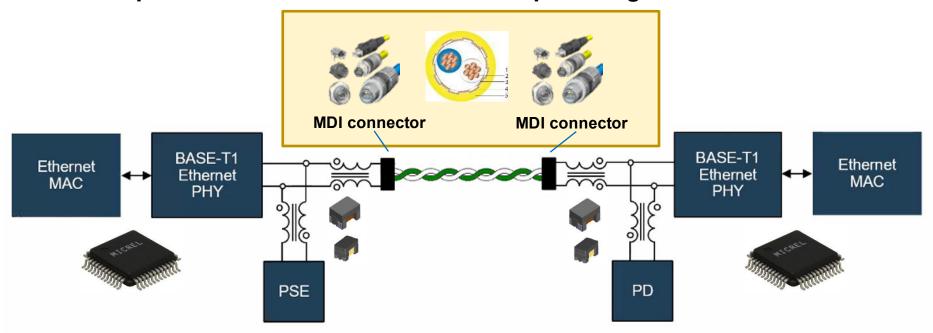
Industrial cabling for single pair Link Segment Type B, 1000BASE-T1 for MICE 2 and MICE 3 environments

2019-05



Single Pair Ethernet

Single Pair Ethernet – Ecosystem

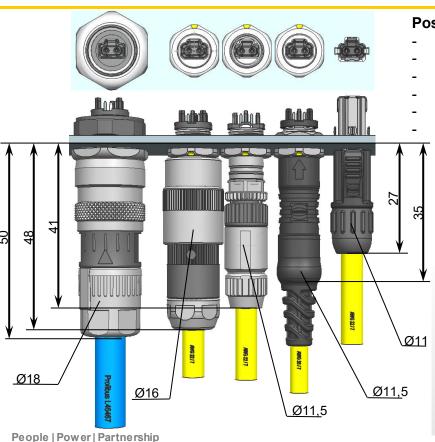


SPE Technology – The needed components

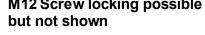
Principe of a SPE link with PoDL remote powering:

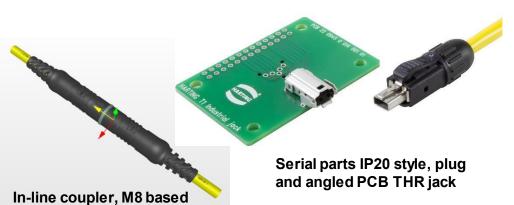
→ All single components must be available to start the design of SPE devices.

People | Power | Partnership


The HARTING SPE connector based on IEC 63171-6

Connector type	Locking mechanism
1 pair core container	n.a.
same container used in all MICE3 connector housings	
with stainless steel shielding	
IP20 jack and plug	metal latch
for cables AWG26 up to AWG22 (18) (solid and stranded)	
Cable diameter 4 – 6 mm	
IP65/67 jack and plug in M8 housing	locking screw, optional: PushPull*
for cables 26AWG up to AWG22 (18) (solid and stranded)	*compatible to the locking screw
Cable diameter 4 – 6 mm	
IP65/67 jack and plug in M12 housing	locking screw, optional: PushPull*
for cables AWG26 up to AWG16 – esp. for IEEE802.3cg (solid and stranded)	*compatible to the locking screw
Cable diameter 4 – 12 mm	


The HARTING SPE connector based on IEC 63171-6


Possible variants from right to left:

- IP20 style
- M8 Snaplnn
- M8 Screw locking
- M8 PushPull locking M12 PushPull locking
- M12 Screw locking possible

Prototype M8 style, plug overmolded and straight PCB THR jack with housing

The HARTING SPE connector based on IEC 63171-6

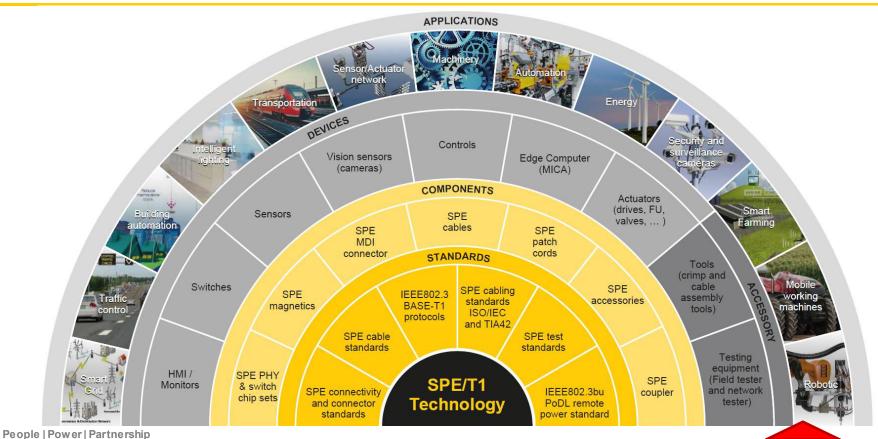
- Delivers best HF performance and head room for remote powering (up to 1000mtrs.)
- Future-proof → prepared for higher bandwidths and bigger loads
- Using existing and already standardized housings/dimensions and locking mechanisms → simple implementation, cost effective new device design
- IP20 interface pluggable with locking to IP65/67 M8 and M12 connector versions for testing and configuration set ups (usually non permanent use)
- Connector standard will be published in 2019
- First SPE connectivity products will be launched in 2019
- Modular product concept always the same plug and receptacle inserts are used

People | Power | Partnership

IP20 SPE plug mated with M12 SPE jack

The TE hybrid SPE connector based on IEC 63171-6

This 2+2-pin M8 connector for separate data transmission and power supply (60V DC / 8A) is also part of the new IEC 63171-6 (former IEC 61076-3-125) standard.



Single Pair Ethernet

Single Pair Ethernet – Ecosystem

SPE Technology – Why?

Megatrends in Information- and Communication Technology

- Cloud & Edge Computing
- Industrial Internet of Things IIoT
- Industrie 4.0
- Smart Technologies

Impact of Megatrends to Connectivity and Cabling

- Higher Transmission Performance
 - higher Bandwidth/Data Rate and parallel Remote Powering
- IP based Data Services replace Bus Services
- Smaller design of Connectors Miniaturization
- Simple but confident operation

Use cases for Single Pair Ethernet (SPE) Technology

Automation

Transportation

Machinery

and many others

People | Power | Partnership

Major Benefits:

IP based Communication up to the Field Level

Shorter Installation Time for Field Devices

Simplifying Parametrization and Initialization

Easy Operation and Maintenance in a common IP-based Network

Space saving and weight reduction Cabling

10MBit for Process Automation and Gigabit Ethernet for Automation Networks

In combination with TSN the perfect infrastructure for IoT and IIoT

HARTING T1 Industrial - Product portfolio

HARTING T1 Industrial

Reasons why

HARTING T1 Industrial

- The connectivity for Single pair Ethernet (SPE)
- Combining Ethernet data transmission and power supply (PoDL = Power over Data Line) in one single interface
- Ready for SPE standards:
 - IEEE 802.3cg 10BASE-T1 10Mbit/s up to 1.000m
 - IEEE 802.3bw 100BASE-T1 100Mbit/s up to 40m
 - IEEE 802.3bp 100BASE-T1 1000Mbit/s up to 40m
 - IEEE 802.3bu PoDL Power over data Line to deliver power to the connected SPE devices
- High shock and vibration resistance and long service life that boasts 5,000 mating cycles
- Very compact, less weight and installation space compared to other Ethernet systems
- Mating face for IP20 and IP65/67 standardized according to IEC 63171-6
- Listed at MDI connector proposal at IEEE 802.3cg and in the way to implemented as connectivity at ISO/IEC 11801-x

People | Power | Partnership